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Abstract: Although proof and reasoning are seen as fundamental components of
learning mathematics, research shows that many students continue to struggle with
geometric proofs. In order to relate pedagogical methods to students' understanding of
geometric proof, our three-year project focuses on two components of student under-
standing of proof, namely, students' beliefs about what constitutes a proof and stu-
dents' proof-construction ability. The classroom environments in the first year of the
study were generally teacher-centered learning environments in which proofwas logi-
cal exercise rather than a tool for establishing a convincing argument. Students har-
bored several ill-founded beliefs including: general claims may be established on the
basis of checking critical examples, the form of an argument is more important than
its chain of logical reasoning, and proofs are only valid for their associated diagrams,
even if specific features of the diagram are not incorporated into the proof. In addition,
students had great difficulty constructing proofs unless the key relationships neces-
sary to establish the proof were outlined for them.

Introduction
Proof is fundamental to the discipline of mathematics because it is the convention

that mathematicians use to establish the validity of mathematical statements. In addi-
tion, the teaching of proof as a sense-making activity is fundamental to developing
student understanding in geometry and other areas of mathematics. Despite the fact
that student difficulty with proof has been well established in the literature, existing
empirical research on pedagogical methods associated with the teaching and learning
of geometric proof is insufficient (Chazan, 1993; Hart, 1994; Martin & Harel, 1989).
Our work in this area has begun to address the need for research into the pedagogy
of geometric proof instruction. We focus on geometric proof because geometry is tra-
ditionally the course in which students are first required to construct proofs. We havebegun a three-year study to develop an empirically grounded theoretical model that
relates pedagogy to student understanding of proof.

In order to assess the effectiveness of the pedagogical methods used by participat-ing teachers, the project focuses on two components of student understanding of proof,
namely, students' beliefs about what constitutes a proof and students' proof-construc-
tion ability. Specifically, the first year of the project has addressed three objectives:

1. To document student understanding of proof in order to update and expand
existing research in this area;
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586 Reasoning and Proof

2. To characterize evolving student beliefs about what constitutes a proof in
proof-based geometry classes and to link these characterizations to aspects of
the pedagogy including sociomathematical norms, nature of the activities, and
teacher beliefs; and

3. To characterize students' evolving proof-construction ability in proof-based
geometry classes and to link these characterizations to aspects of the pedagogy
including sociomathematical norms, nature of the activities, and the teacher's
instructional philosophy.

Perspectives

Existing research documents students' poor performance on proof items and iden-
tifies common, fundamental misunderstandings about the nature of proof and general-
ization in a number of mathematical content areas (Chazan, 1993; Harel & Sowder,
1998; Hart, 1994; Martin & Harel, 1989; Senk, 1985). In trying to make sense of stu-
dents' difficulties with geometric proof, Dreyfus and Hadas (1987) articulate six prin-
ciples which form a basis for understanding geometric proof. These principles address
many of the student misunderstandings of proof cited in the literature.

The theories guiding our research come from proof-related research projects
including the work of Harel and Sowder (1998), Hoyles (1997), and Simon and Blume
(1996). Some researchers (Balacheff, 1991; Harel & Sowder, 1998; Knuth & Elliott,
1998) have proposed similar theories that describe increasingly sophisticated strate-
gies used by students to construct proofs. At the least sophisticated level, students
appeal to external forces for mathematical justification. At the next stage, students
base their justifications on empirical evidence. Finally, students are able to use more
abstract and mathematically appropriate techniques when proving statements. The
findings from our three-year study will be used to make connections between peda-
gogy and various levels of student understanding.

Methods

During the first year of the study, we collected data in the classrooms of two
teachers in a large high school in the mid-western United States, recording the beliefs
and proof construction ability of the students as well as the beliefs held and the peda-
gogical methods used by their teachers. The teachers participated in a summer work-
shop, prior to the school year, during which they read and discussed existing research
on geometric proof and experienced methods for investigating proof. Teachers also
worked collaboratively with the researchers and graduate assistants to plan for and
reflect on classroom events. In order to capture classroom events, we conducted daily
observations and videotaping of classroom activities during the four months in which
proof was a major focus of the curriculum.

In order to document beliefs, we revised and extended Dreyfus and Hadas' (1987)
six principles, then constructed the Proof Beliefs Questionnaire that assessed students'
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agreement with these revised principles. It was necessary to add more detail to Drey-fus and Hadas' (1987) principles, in order to address a broader set of beliefs and to reli-ably map items to particular principles. Questionnaire items consisted of items modi-
fied from instruments used by Chazan (1993), Healy and Hoyles (1998), and Williams
(1980), as well as some original items.

To assess students' ability to construct proofs, we developed a performance assess-
ment instrument, the Proof ConstructionAssessment. The Proof Construction Assess-Merit included items in which students must construct partial or entire proofs, as well
as generate conditional statements and local deductions. In addition to some original
items, the instrument includes items modified from Healy and Hoyles (1998), Senk(1985) and from the Third International Mathematics and Science Study (TIMSS)(1995).

The Proof Beliefs Questionnaire was given to all students during the first semes-
ter, about three weeks after proof had been introduced. We conducted follow up inter-
views with six focus students in each class to clarify their beliefs. These students were
selected on the basis of their performance on the questionnaire and teacher recommen-
dations. During the second semester, the Proof Construction Assessment was admin-
istered to all students in the two classes, and another set of interviews was conductedwith the 10 of the 12 focus students.

The multiple sources of data helped us to learn about the context for the develop-ment of students' beliefs about what constitutes a proof and their ability to constructproofs in order to interpret this information and connect it to pedagogy. Other data
sources included audiotaped planning meetings with researchers and teachers as well
as interviews with the classroom teachers.

Results
In order to get a sense of the classroom environments in which the research tookplace, we first describe general features of the two classrooms as well as some of

the typical classroom practices. One of the two participating teachers had been teach-ing for 5 years and the other for more than 20 years. Despite the difference in yearsof experience, there were several commonalities in the teachers' classroom practices.
Both teachers followed the order and scope of the textbook quite closely. The typical
daily routine involved discussing homework, introducing new material, and practicing
new material. At the suggestion of researchers, student desks were arranged in pods offour to facilitate student dialogue.

In analyzing videotapes and field notes of classroom sessions, we have identified
several features of the classroom environment, including social norms, sociomathe-
matical norms, and other factors, that may have influenced students' learning.

The social norms, or standards ofsocial behavior in the classroom, included:
The teacher was the mathematical authority in the classroom. Teachers provided
counterexamples to student conjectures, rather than remaining neutral or turning
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conjectures back to the class. They also posed rhetorical questions so that
students were essentially asked to agree with the correct answer.

There was limited time for thinking and answering questions. Teachers often
asked and answered their own questions. Wait time was very short. In-class work
time for groups was very limited. Teachers often interrupted this time with hints,
advice, and examples.

The sociomathematical norms, or standards for mathematical behavior in the
classroom, included:

There were few opportunities for sense-making. Students appealed to facts such
as "you can't divide by zero," but were not generally asked to explain or make
sense out of these facts. Students were able to make claims about geometric
relationships without justifying their claims.

Problems and proofs always worked out nicely. Problems had solutions and
proofs contained all the necessary information to prove the desired result. In
instances where this was not the case, it was due to a "typo" either in the text or
on teacher-made worksheets. Students were directed to fix the mistake and solve
the problem or complete the proof.

It was not clear that there was a need for proof There was very little opportunity
to make conjectures or prove conjectures. Proofs that students had to construct
were generally proofs of given "facts."

An additional factor that may have influenced the students learning environment
was:

Teachers' pedagogical practices were limited by their content knowledge. The
less experienced teacher rarely strayed from teacher-directed activities. When
she did, errors in reasoning and in logical structure were documented. The more
experienced teacher made fewer errors and was more willing to follow up on
students' mathematical suggestions.

These general features established an environment in which the teacher had most
of the responsibility for constructing convincing arguments and the students were left
to mimic the expert practices of the teachers.

Beliefs About Proof

We have used our revisions of Dreyfus and Hadas' six principles (1987) as a
framework for our analysis of student beliefs. The Proof Beliefs Questionnaire, which
is aligned with these six principles, formed the basis of students' self-reported beliefs
about proofs. By synthesizing Proof Beliefs questionnaire data with interview data and
classroom observations, we have developed some preliminary findings. These findings
are organized by principle.
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,; Principle 1: A theorem has no exceptions. Some students claim to believe that this,isitrue. During clinical interviews with students regarding their beliefs, students statedthat theorems don't always have to be true and there can be some exceptions to the
;theorems. However, they sometimes allow for exceptions to the rule when faced with
,counterexamples. In the classroom, the teachers used counterexamples to respond tostudents when they made a false claim. (For example, one student asked if AAA was,a, congruence theorem. The teacher sketched a pair of similar triangles to show that it.was not a theorem.) However, the teachers did not take the opportunity to emphasizethat, here was a counterexample being used to refute a statement.

Principle 2: The dual role ofproof is to convince and to explain. Despite students'claim that proofs are required to establish validity, they are often unconvinced by gen-,eral.proofs. In fact, they often claim that examples are more convincing than proofs.It isnot clear that the explanatory role of proof has hit home with these students. Thestatements that they were asked to prove in the classroom were generally statementsthey already believed to be true. In other words, the explanatory role of proofwas nota critical role for students, because, in their own minds, they had already ascertainedthe validity of the statement. Opportunities for students to make conjectures then provethese conjectures were rare, and generally out of the comfort zone for the participatingteachers.
"- Principle 3: A proofmust be general. Students believe that empirical evidenceconstitutes a proof. They also believe that checking critical cases (e.g., an isosceles'triangle, a right triangle, an obtuse triangle, etc.) satisfies the requirements for general-ityin an argument. They view a specific triangle as a reasonable representative for alltriangles in the classification. In the classroom, teachers appealed to specific examples

to help demonstrate the validity of a statement and the application of a statement (notnecessarily clearly distinguished), possibly contributing students' belief that examplesconstitute a convincing argument.
Principle 4: The validity ofa proof depends on its internal logic. Students claimedto prefer two-column proofs to any other style of formal proof (e.g., paragraph orflow chart). They believed that two-column proofs were more organized and easier tounderstand. In assessing the relative value of multiple proofs, they appealed to formOver internal logic. In addition, when checking proofs, some students were not par-ticularly attentive to issues of logical order, with the exception of the location of givenstatements in a proof. In the classroom, the teachers almost always used two-columnproofs for direct reasoning and reserved the paragraph format for indirect proofs.Although the teachers experimented with flow chart proofs, they often aligned themas' if they were two column proofs and sometimes misrepresented the logical connec-tions:

'.1../:;rinciple 5: Statements are logically equivalent to their contrapositives, but notliecessarily to their converses or inverses. Students appealed to context to determinelie validity of various forms of a statement and not to the logical equivalence of the
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form of the statement. If the context is a nonsense context, students will translate
the context to a "real life" context in order to reason in context. In the classroom,
converses, inverses, and contrapositives were treated as an independent section at the
beginning of the school year. They were not connected to later treatments of proof,
which were generally focused on proving positive statements. There was no link to
these forms during the section on indirect proof either.

Principle 6: Diagrams that illustrate statements have benefits and limitations.
Students believe that a diagram is valuable to forming a proof. However, many stu-
dents are unclear about which aspects of a diagram are general (i:e., meant to represent
a class of figures) and which are specific. Some students also believe that a proof is
only valid for its accompanying figure, or at least its accompanying class of figure
(e.g., obtuse triangles), even if the specific features of the figure (e.g., obtuse angle) are
not incorporated into the proof. The role of diagrams as general representations was
not explicitly discussed in class.

Proof Construction Ability

Student proof construction ability was determined using three types of data col-
lected during the project year. First, the Proof Construction Assessment instrument
was developed to measure students' varying levels of ability to engage in formal logi-
cal reasoning. Second, data was collected during classroom observations. Observers
took field notes and video recorded classroom sessions of proof instruction as well
as students working in groups or with technology to develop proofs. Third, a set of
ten focus students participated in clinical interviews with researchers. The interviews
focused on some aspects of the Proof Construction Assessment and required focus
students to create at least one original proof during the session.

The Proof Construction Assessment included items with varying amounts of sup-
port in order to assess proof construction ability at four levels. Items at the first level,
which offered students the greatest support, required students to fill in the blanks in a
partially constructed two-column proof. Items at the second level of support addressed
specific components of proof construction. The first type of item at this level addressed
students' understanding of conditional statements. Students were asked to separate the
if and the then components of a conditional statement in order to identify which com-
ponent was associated with the relationships that were given and may be assumed to be
true and which component required proof or justification. The local deductions items
were also at this second level of support. These items assessed students' ability to draw
one valid conclusion from a given statement and to justify the conclusion. This was
less supported than the fill-in type item because the students were required to draw
the conclusion themselves, without being told what they were to justify or what the
justification was for a missing statement. This type of task is equivalent to producing
and justifying only one step in a logical argument. Items at the third level of support
required multi-step reasoning. These items required students to construct proofs for
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which hints were provided. These hints identified some of the key elements in the
proofs logical_ chain of reasoning. At the fourth level of support, students were asked
to generatea.complete, multi-step formal proof, independently.

Results' from the Proof Construction Assessment are found in Table 1. Student
perfOrmance:on the instrument suggests that the students in both classes seemed to
have the greatest difficulty with items 2 and 4, which provided the least amount of
Scaff91ding. These items required students to write original proofs ofstatements based
On given, conditions. Even though students also needed to write a proof for item 5,
they'were"provided with ideas for outlining the proof. Strong student scores on item 5also might be due to the fact that students were most familiar with the content (similartriangles) since they had just completed a unit on similar triangles in class. Student
perforrnance,was best on items 1 and 3, which provided the most scaffolding. For item,1-sttidents were asked to fill in the missing statements or reasons for a proof that hadbeen developed for them. For item 3, students were required to write a conditionalstatement and then use this statement to determine what information was given andwhat, was necessary to prove if asked to justify the conditional statement. By synthe-
sizing; Proof Construction Assessment data with interview data and classroom obser-yatiotis, we,have developed a few preliminary findings.

,,3 Content knowledge is a major factor in student proof construction ability. Stu-dent,performance on the Proof Construction Assessment was discussed during clini--catinterviews with students. During these interviews, several students claimed to havedifficulty with those items whose content was unfamiliar or whose content was fromlessons earlier in the school year. When the geometric content was somewhat famil-iar to the students, they were able to talk through aspects of the given diagram (orprovide; their own diagram) that eventually led them to at least an elementary under-standing of what was needed to write a proof. When the content was unfamiliar, at

Table 1. Student Performance on the Proof Construction Assessment.

b Item Number
Average Score as a percent

for Mrs. A's students
Average Score as a percent

for Mrs. C's students
;..,, ;..

61.6 69.5
2 22.3 27.4
3 66.5 76.7
4 33.1 30.5
5 52.3 70.5
6 42.3 39.0

Total 46.7 51.1
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least one student was unable to provide even one valid conclusion from a given state-
ment. Field notes of classroom observations indicate that the classroom teachers often
"brainstormed" with students about a given situation and wrote an outline for a proof
prior to requesting that students write a formal proof on theirown. These "brainstorm-
ing" sessions helped all students recall the content needed to complete the proofs.

Format for writing formal proofs was over-emphasized in class (understanding
the need for proof was under-emphasized). At the start of instruction on proof writing,
both classroom teachers modeled a variety of proof writing techniques and allowed
students to write proofs in flow chart form, paragraph form, or two-column form.
However, after about two weeks of proof instruction, the teachers only showed proofs
in two-column form. Thus, this became the accepted method for writing a formal
proof. By this point students had also begun to "validate" their proofs by checking that
their statements and reasons matched those demonstrated by the teacher in number
and content. Students were often convinced that their proof was valid if the number
of steps in the proof matched the number of steps in the proofs constructed by other
students in the class. These ideas relate to the belief that the form of the proof is more
important than the substance of the proof.

Students were not given many opportunities to explore mathematical ideas and
proof writing on their own. One goal of proof writing is that the writer will come to a
deeper understanding of the mathematical concepts involved. For this to happen, the
writer must see proof development as a logical process that begins with exploration of
mathematical ideas. Often, students in the research classroom were merely given new
geometric ideas, such as the fact that parallel lines have the same slope, and expected
to use these ideas to prove statements or situations that were provided for them. More-
over, the teachers frequently demonstrated how to complete a proof using the new
ideas before allowing the students to explore the ideas or to write similar proofs on
their own.

Conclusions

Some of the findings from the first year of the study echo the results of earlier
studies such as the fact that many students believe that a set of examples constitutes a
proof (Chazan, 1993; Harel & Sowder, 1998). In addition, students' poor performance
on writing original proofs supports Senk's (1985) findings. It is our investigation of
the classroom environment and its connection to students' understanding that sets our
work apart from the existing literature.

The classrooms we studied were teacher-centered environments in which success-
ful proof-writing consisted of using an acceptable format to link a collection of defini-
tions, postulates, and theorems in a repeatable pattern of sequenced steps. In this envi-
ronment, students developed some beliefs that were contrary to their teachers' expec-
tations and to generally accepted principles of proof understanding. The classroom's
social and sociomathematical norms gave rise to specific classroom practices that were
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generally detrimental to developing student understanding. For example, there werefew, .opportunities for sense-making. Because students were not expected to reasonabout geometric relationships in an informal context in the classroom, they never prac-ticed proof-writing as a form of making sense of geometric relationships. Althoughthey.,claimed to believe that proofs were useful for explaining relationships, studentsjudged the validity of arguments based only upon a proof's format or on whether theybelieved that the statement to be proved was true.
The teacher's role as the mathematical authority in the classroom also impactedstudents' beliefs. In particular, when the teacher led classroom discussions, studentswere easily distracted, because they had little responsibility for making mathematicaldecisions. They were also reluctant to investigate or make conjectures because therewas usually not long to wait before the teacher would provide the correct answer orprovide the next step in a proof.
An environment in which all problems can be solved and we only prove true factsalso ,undermines the value of proof as a sense-making tool. It is not surprising that

students do not see a need for proof in a situation in which everything we try to proveis true and if it cannot be proved, then we can safely assume that needed information
was inadvertently omitted.

Our first-year results show that environmental aspects of the classrooms certainly
have the potential to impact students. Social norms and sociomathematical norms cangive rise to classroom practices in which students' main goal is to generate work thatlooks like the teacher's examples. The effect of this is that students may be less likelyto do their own thinking about the given situation and more likely to simply follow the
format provided, even if they experience little success in implementing the practice. Ifwe take the position that students must construct their own knowledge by doing andexperiencing, this model for teaching proof construction may have a detrimental effecton student learning.
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